Module 2: Discrete Time FSMs

1 Summary

This module’s goal is to familiarize students with modeling Android applications using Timed Finite State
Machines (FSMs). Students will learn and observe the importance of modeling in applications that utilize a
discrete concept of time.

2 Hardware Requirements

Any Android compatible device with a touch screen.

3 Additional References

e Chapter 3 in “Introduction to Embedded Systems, A Cyber-Physical Systems Approach” by Lee and
Seshia. http://LeeSeshia.org, ISBN 978-0-557-70857-4, 2011.

e “Finite State Machines and Modal Models in Ptolemy II” by Edward Lee.
hitp:/ /www.eecs.berkeley. edu/Pubs/TechRpts/2009/EECS-2009-151.pdf

e Android Developer’s Guide. http://developer.android.com/quide/index.html

4 Discrete Modeling in Android

Finite State Machines (FSMs) are a modeling tool useful in representing discrete things, such as programs.
They consist of a set of states and a set of transitions between those states. Usually, only one state is labeled
as the initial state, where execution of the program begins. As the program executes, the finite state machine
model represents the state of the program, taking transitions to other states based on certain types of inputs
to the program. The program finish can be modeled as a final state in the diagram, but many Android apps
may run continously, and their model would not have a final state. FSM modeling is commonly a design-time
activity, which means it is done prior to the majority of the implementation work. In other words, we use
FSMs to capture the program states, and how they change based on the inputs

The benefit of modeling using FSMs is that the resulting software can be more robust, and most of the
corner cases will already have been thought our and represented in the model. We want to design FSMs
that have the property of receptiveness, where each state contains a transition for all possible inputs. This
ensures that we handle all corner cases properly, and that the model has considered all possible inputs in all
software states.

4.1 Application: Baby Toy

Students will design an application that will transform the Android device into a baby toy. The toy will
display baby-friendly images in a 30 second loop on the center of the screen. The application will also have
4 buttons placed in the 4 corners on the screen. These buttons will act as a baby proof lock: the application

exits only when the user presses the 4 buttons in sequence, with no longer than a 1 second gap between two
button pushes. Pressing any of the buttons should not interfere with the images that will show on the screen
to entertain the baby.

— —
i 5554avdOne

BabyToy

o000

eV

[2JaJe-Js-Js [7.1a |a [o
o e Jn |7 v [u s |

4.1.1 Starter Model

The starter model for the baby toy application contains four buttons, two output boxes, one timer, and two
(empty) FSMs. It’s your responsibility to implement the content of these FSMs, one of which
corresponds to the image rotation functionality and the other to the detection of the exit.

SDF Director

AndroidButton

' 0 —
AndroidButton2 . SecurityAccessFSM Exit?

ImageRotateFSM Image Number

@m;%

4.1.2 Modeling

As in the security access app, we want to design and model the baby toy before we begin any implementation.
We rely on Ptolemy II to produce a FSM, and the associated machinery necessary to execute and test it.
For this application, we need to also model the periodic image rotations and to model the time constraint
between consequtive button pushes. Both of these require to model the concept of time in our FSMs. To
model the passage of time more effectively we use FSMs with additional capabilities, called extended FSM,
which can set and get variables.

o timerStart: 0

guard: timerStart + 30 <= inTimer
output: outimageNumber = 2
set: timerStart = inTimer

DisplayilmageOne

DisplayimageTwo

output: outimageNumber = 1

set: timerStart = inTimer

P DisplayimageThree outimageNumber
|$mer *

Above is an incomplete version of the image rotation part of the Baby Toy model. Read the passage below
and study the model carefully, with the help of your instructor, and complete the missing guards/outputs.

The above model encodes the image rotations, which occur every 30 seconds. The above finite state
machine has one input port, which is a discrete counter/timer, and one output port that denotes the image
that will appear on the Android device’s screen. The counter input begins at some number, for instance
0, and increses by one. We record the initial count of the timer into a variable called timerStart. The
FSM transitions only when it has measured a change in the timer of at least 30 counts (corresponding to
30 seconds), starting from timerStart. Each transition reinitializes the timerStart variable to begin the
countdown, and outputs an number corresponding to a different image that will appear of the screen. Also
notice that this FSM does not have a final state, as in this application the image rotation occures infinitely.
Exiting the application is goverened by the 4 buttons in the corners of the screen, which are encoded in the
following FSM.

guard: inButtonOne_isPresent
set: firstClickTime = inTimer

o firstClickTime: O

guard: inButtonTwo_isPresent && (firstClickTime + 1) <= inTimer

ThreeCorrect

inTimer e

»

inButtonOne

output: outExit = true

inButtonTwo

inButtonThree

outExit
inButtonFour

Same as before, above is an incomplete version of the button pressing part of the Baby Toy model. Read
the passage below and study the model carefully, with the help of your instructor, and complete the missing
guards/outputs.

This FSM has five inputs, four of which are for the button pushes, and one that encodes a discrete
timer/counter. The timer’s purpose is to measure out the 1 second interval necessary between the button
pushes. The FSM proceeds from state to state on a correct button push much like the previous security
device FSM. The only difference is that we aren’t worring about detecting wrong sequences as much as
before. Notice that pushing a wrong button doesn’t take the FSM into a “wrong” state. Rather, failing

to press the next button within the necessary 1 seconds interval returns the FSM back to the initial state,
which corresponds to no pushed buttons.

In modeling this application, we supplied separate FSM models encoding the four button sequence needed
to end the application and the 30s image rotation. Note that two models for one application can be a bad
idea for applications where models share data or state. In this application, the two FSM are completely
independent and do not share any data, so constructing separate models is reasonable.

4.1.3 Implementation

In the Security Access Device app, you learned how to create buttons and labels and update their properties
(e.g. Id, Text, etc.). This application uses the same principles, with the addition of a new widget, called
a ImageView that is used to display the image in the middle of the screen. This widget has a setView
method/property that can be used to select an image file to display.

Tmage files in a few common formats (e.g. jpeg, png) need to be added into your project’s res directory.
Here a number of drawable subdirectories indicate the resolution of the image (e.g. hdpi - high dots per inch).
Usually, most images you will come accross can safely be placed in the mdpi - medium dpi subdirectory.

It’s your task to retrieve three baby toy images from the Internet. In doing so, please be aware of copyright
issues - i.e. don’t just take a picture without the author’s permission. A good site with freely available pictures
ts Wikimedia

Now that we are finished with the user interface, we can direct our attention to implementing the logic
of the application. Again, we want to make heave use of the finite state machines we modeled in Ptolemy.

Stop! Before you continue make sure you understand the concept of threads and how they
are implemented in Java

The image rotation is actually fairly straightforward to implement, as the timing aspects of it are managed
by an Android handler object — android.os.Handler. These objects manage execution threads by scheduling
them to begin executing in the activity’s onCreate method, and, once started, repeatedly re-schedule the
thread to execute at a particular time offset. In our example implementation given below, we use a 1 second
scheduling interval for both the rotateImageTask and detectExitTask threads. Each of these threads
implement one of the FSMs we modeled before. The rotateImageTask is quite simple, as it measures the
number of executions of this thread in the inTimer variable. Once the count reaches 30, this corresponds to
30 seconds elapsed, and we rotate the image.

enum ImageState {

DisplayImageOne,
DisplayImageTwo,
DisplayImageThree
}
private ImageState imageStatus = ImageTypes.DisplayImageOne;
private ImageView image = null;
private Handler threadHandler = null;
private Runnable rotateImageTask = new Runnable() {
private int inTimer = O;
private int timerStart = 0;

public void run() {
long millisElapsed = SystemClock.uptimeMillis();
inTimer++;
image = (ImageView) findViewById(R.id.ImageViewId);

if ((timerStart + 30) <= inTimer) {
timerStart = inTimer;
if (imageStatus == ImageState.DisplayImageOne) {
imageStatus = ImageState.DisplayImageTwo;
image.setImageResource (R.drawable.filenamel) ;

}

else if (imageStatus == ImageState.DisplayImageTwo) {
imageStatus = ImageState.DisplayImageThree;
image.setImageResource (R.drawable.filename2);

}

else if (imageStatus == ImageState.DisplayImageThree) {
imageStatus = ImageState.DisplayImageOne;
image.setImageResource (R.drawable.filename3);

}

}
threadHandler .postAtTime (this, millisElapsed + 1000); //post every 1 second

};

Now, we are left with implementing the application exit via ordered presses of the four buttons in the
corners, with no more than one seconds of time between two presses. We have some experience dealing
with buttons from the security access device in our first Android app. To this, we need to add the ability
to measure out a 1 second time interval between button pushes. As before, we use an enumeration type
defining each of the states.

enum AppState {
Init,
OneCorrect,
TwoCorrect,
ThreeCorrect

}
private AppState state = AppState.Init;

private boolean bl=false;
private boolean b2=false;
private boolean b3=false;
private boolean b4=false;

//Button check thread
private Runnable detectExitTask = new Runnable() {
public void run() {
long millisElapsed = SystemClock.uptimeMillis();

if (b1 && state == AppState.Init) {
state = AppState.OneCorrect;
bl = false;
}
else if (b2 && state == AppState.OneCorrect) {

state = AppState.TwoCorrect;
b2 = false;

}

else if(b3 && state == AppState.TwoCorrect) {
state = AppState.ThreeCorrect;
b3 = false;

}

else if (b4 && state == AppState.ThreeCorrect) {
//TODO: use activity.finish() here

}

else {
state = AppState.Init;
bl = b2 = b3 = b4 = false;

}

threadHandler.postAtTime (this, millisElapsed + 1000); //post every 1 second

};

The above code implements the FSM from our model by using the exitState variable to denote the
current state. Four boolean variables, bl through b4 are set to true whenever a specific button is clicked.
This is performed in each of the button’s onClickListener, which was registered in each of the button’s
onClick property in the user interface, and is shown below. The handler thread is scheduled to execute
every one second, and when it does so it either progresses through the clicked buttons of the FSM (e.g.
OneCorrect to TwoCorrect) or reverts back to the Init state. If it returns to the Init state, it will reset
all of the button clicks by setting b1 to b4 to false. This has the effect that if the application did not receive
the correct button click in the one second interval, it returns back to the beginning and erases all of the
previous clicks from the state machine.

/** Called when the activity is first created. */
public void onCreate(Bundle savedInstanceState) {

//some android stuff is here, don’t change it

//start the threads

threadHandler = new Handler ();

threadHandler.removeCallbacks (rotateImageTask) ;

threadHandler .postDelayed (rotateImageTask, 100);

threadHandler.removeCallbacks (detectExitTask);

threadHandler .postDelayed (detectExitTask, 100);
}

public void clickedButtonOne(View view) {
bl = true;
}

public void clickedButtonTwo(View view) {
b2 = true;
}

public void clickedButtonThree(View view) {
b3 = true;

public void clickedButtonFour (View view) {
b4 = true;

4.1.4 Application Extensions

These are suggestions for possible enhancements to the base baby rattle application. Students are expected
to improve the model as well as produce a working implementation of the following extension.

e Exit the application properly. Figure out how to use the activity.finish method to exit the appli-
cation instead of going in a nonresponsive state. You will need to read a bit of Android documentation
(google it!) and figure out how to get an handle of the activity object to where you need it in your
code.

e Baby rattle. Babies like things that rattle, so make the phone rattle at 30 second intervals that
alternate with the image changes. In other words, every 15 seconds the app will either change the
image or rattle.

