App Inventor for Android

Hui Chen, Kostadin Dameski, and David Walter Dept. of Math & Computer Science Virginia State University, Virginia, 23806

Outline

- □ Background
- □ A simple app
- Sensors and sensors-driven applications
 - Location sensor (GPS)
 - Accelerometer
- □ The take-home
 - Can instruct your own students to prepare working systems for "App" development
 - Can explain App Inventor environment
 - Can develop simple apps

Lesson Website

http://sysnetgrp.net/academy/cs4hs

Evolving of Computing

PCs and Mobile Devices

- □ Big & heavy
- □ Many peripheral devices and drivers
- Complex support software of many vendors
- Designed for stationary use or limited mobility

- □ Small & portable
- □ Sensors in a single case
- □ One single platform
- **D** Designed for mobility

07/01/2013

Smart Phones and Tablets

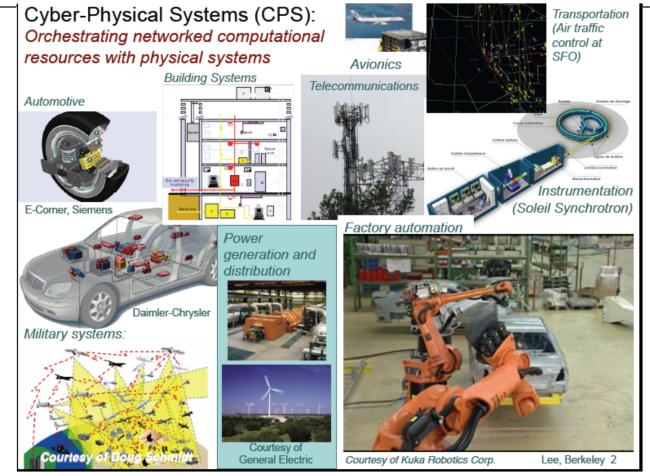
□ New "Instrument" for Teaching and Learning

Sensors

Camera, Accelerometers, GPS, Light, Gyroscope, microphones ...

Networking

□ 3G, 4G; WiFi; Bluetooth


Peripheral devices

Android Accessory Development Kit

□ Various vendors and suppliers: e.g., Arduino

Skills and knowledge can be applied in many applications

Exciting Applications

In Edward A. Lee. Time for High-Confidence Cyber-Physical Systems, Talk or presentation, 20, March, 2012; Invited Plenary Talk, Perfomance Metrics for Intelligent Systems (PerMIS-12) Workshop, University of Maryland. 07/01/2013 App Inventor

Increasing Software Complexity in CPS

In 2005, 30-90 processors per car

- Engine control, Break system, Airbag deployment system
- Windshield wiper, door locks, entertainment systems
- Example: BMW 745i
 - 2,000,000 LOC
 - Window CE OS
 - Over 60 microprocessors
 - 53 8-bit, 11 32-bit, 7 16-bit
 - Multiple networks
 - Buggy?
- Cars are sensors and actuators in V2V networks
 - Active networked safety alerts
 - Autonomous navigation
 - o ...

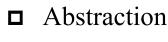
 It is the software that affects system complexity and also cost.

 Software development stands for 70-80 % of the overall development cost for some embedded systems.

In Insup Lee, CIS 480, Spring 2009, http://www.seas.upenn.edu/~lee/09cis480/lec-CPS.pdf 07/01/2013 App Inventor

Opportunity of Android Devices

u Why Android?


- Open source, can develop on multiple platforms, differentiated cost
- □ Topics can be explored using Android devices
 - Problem solving
 - UI design
 - Sensor-driven apps
 - Computer vision
 - Robotics

□ Learn App Inventor for Android <u>today</u>

07/01/2013

App Inventor

Help develop mental model for learning

Logic

□ Subject matter

Lesson Plan

- □ Introduction to Android and App Inventor
- □ Install the App Inventor Setup
- □ The "Hello Purr" App
 - Develop and run the App
 - □ Use emulator
 - Use an Android device
- □ Sensor-driven applications
 - Location sensor
 - Accelerometer

Android

□ An open source software stack

- Updated and maintained by Google and the Open Handset Alliance
- Source code: <u>http://source.android.com</u>

Android Layers

□ Linux kernel

- □ Standard libraries: Apache HTTP, OpenGL ES, Open SSL, SAX, WebKit, SQLite, libc, FreeType ...
- Android framework: Activity Manager, Search Manager, Notification Manager, Media Player, Widow Manager, ...
- □ Android apps and service
 - Executed by the Dalvik virtual machine, a Java virtual machine
 - Android does supports native C/C++ applications

Android Software Stack

		Applications		
H orme D iale	r SMS/MMS	IM Browser	Camera Ala	rm Calculator
Contacts Voice	Dial Email	Calendar Media Player	Albums	idk
		Application Framewor	k	
Activity Manager	Wind ow Man ager	Content Providers	View System	Notification Manager
Package Manager	Telephony Manager	Resource Manager	Lo cation Manager	XMPP Service
Libraries			Android Runtime	
Surface Manager	Media Framework	SQLite	Core	e Libraries
OpenGLIES	FreeType	LibWebCore	Dalvik Virtual Machine	
SGL	SSL	Libc		
		Linux Kernel		
Display Driver	Camera Driver	Bluetooth Driver	Flash Memory Driver	Binder (IPC) Driver
USB Driver	Keypad Driver	WiFi Driver	Audio Drivers	Power Management

From: https://source.android.com/tech/security/

07/01/2013

App Inventor

Android Applications Packaging

□ Packaged and distributed in .apk file

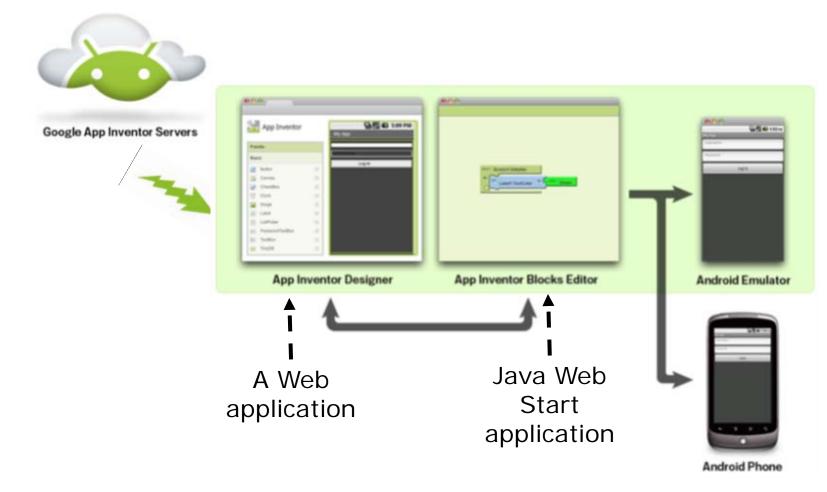
- APK = Android Package
- A zip file with a distinct file structure
- Contains
 - **The Android Manifest file**
 - □ A resource bundle (sounds, graphics, etc)
 - **The Dalvik classes**

Learn to Develop Android Applications

□ Large development environment

- Java programming language
- Android SDK and Development Tools
- Eclipse
- •••••
- □ Through large software stack
 - Various library, services, and APIs
- □ **Not trivial** even for experienced developer

Make it More Accessible ...


□ App Inventor for Android (or App Inventor)

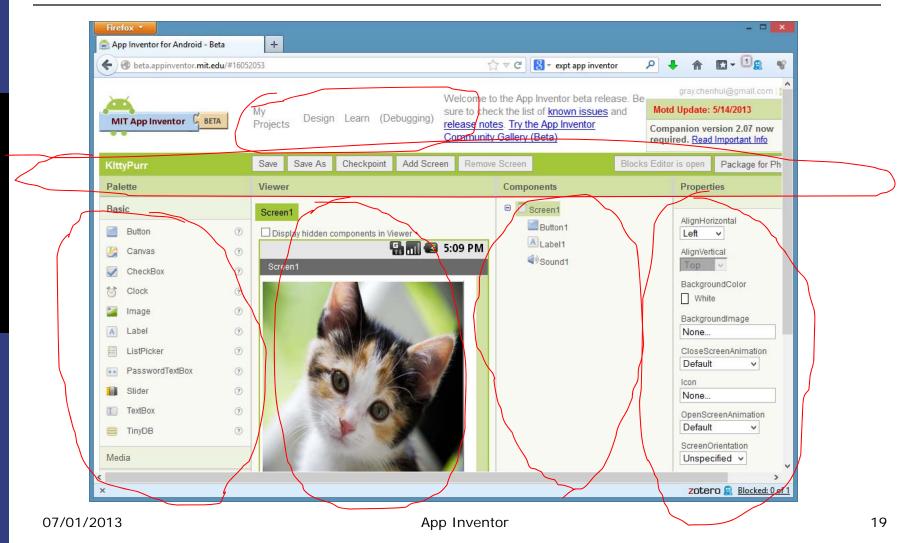
- Initially developed by Google
- MIT picked it up
- Visual programming (similar to Scratch): creating applications by "drag & drop" visual objects

□ Sofia Framework

- Stephens H. Edwards, Virginia Tech
- <u>http://sofia.cs.vt.edu/sigcse2013/</u>
- Designed for Computer Science CS1/CS2 courses

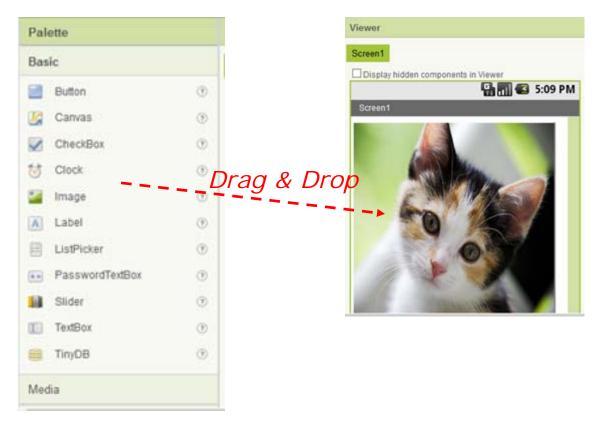
App Inventor

App Inventor


□ The App Inventor Designer

Select Components and design User Interface

□ The App Inventor Block Editor


- Assemble program blocks that specify how the components should behave.
- Assemble programs visually, fitting pieces together like pieces of a puzzle.
- □ The App Inventor Setup
 - Install on local computer to support the above
 Emulation, connect to devices, ...

App Inventor Designer

App Inventor Designer

□ Select the components for your app.

Components

□ A reusable software module

- Methods
 - **Behavior of the component**
- Events
 - An action or occurrence detected and may be handled by the program
- Properties
 - **Attributes of the component**
 - □ Some may be read-only

The Button Compon	Text for Button2
http://appinventor.mit.edu/explo ontent/basic.html#Button	Properties Default BackgroundColor Default Enabled Imabled FontBold FontBold FontSize 14.0 FontSize 14.0 FontTypeface default Image None Shape default ShowFeedback Image
	00

07/01/2013

The Label Component

□ <u>http://appinventor.mit.edu/explore/content/basic.html#Label</u>

The TextBox Component

<u>http://appinventor.mit.edu/explore/content/basic.html</u> <u>#TextBox</u>

Components

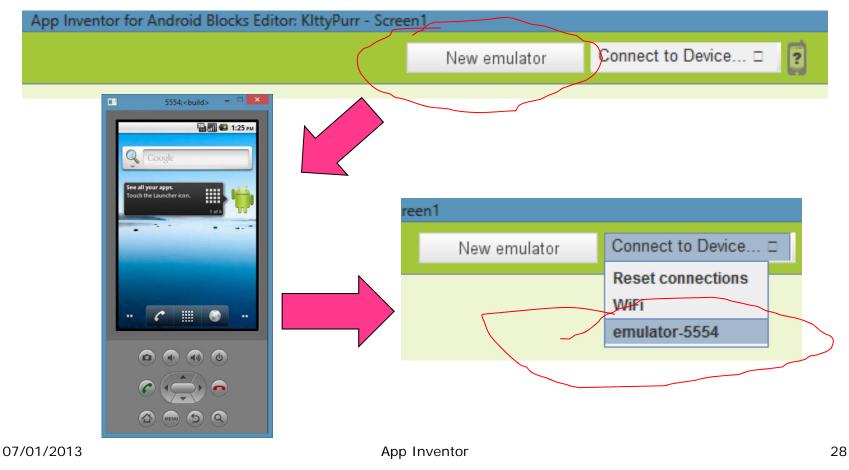
- □ Basic components
- □ Media components
- □ Animation components
- □ Social components
- □ Sensor components
- □ Screen Arrangement components
- □ LEGO® MINDSTORMS® components
- □ Other components
- □ Not ready for prime time components

07/01/2013

App Inventor Blocks Editor

□ Use App Inventor Blocks Editor

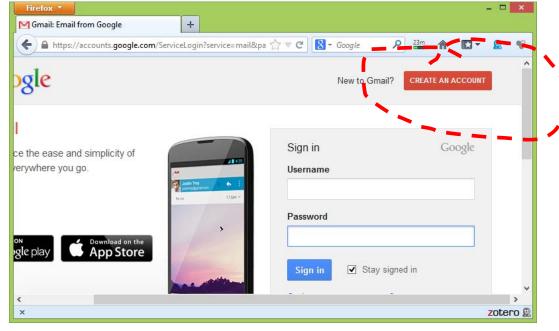
□ Visual programming


- Assemble "blocks"
- Control behavior and logic flow
- Event-driven programming

Blocks

- □ Event Handlers
- Commands and Expressions
- □ Control Flow
- □ Arranging Components on the Screen
- □ Manipulating Component State
- <u>http://appinventor.mit.edu/explore/understanding-blocks.html</u>

Don't Have an Android Device: Emulator

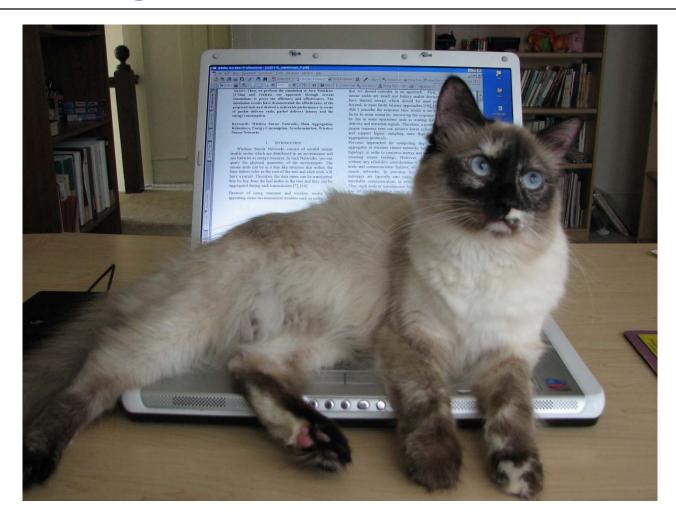

□ Run on both Android Emulator and Android devices

Google Account

App Inventor requires a Google AccountIf you don't have one yet, sign it up now!

<u>http://gmail.com</u> or use provided ones

07/01/2013


App Inventor

Install App Inventor Setup

- □ Step 1: Install or verify Java is installed
- □ Step 2: Install App Inventor Setup
 - If your network slow, download a "local" copy at the workshop website

- □ Install without administrative privilege → user specific
- □ For all users: install with administrative privilege

Let's begin!

07/01/2013

App Inventor

Develop "Hello Purr" App

□ Hello Purr

- "HelloPurr is a simple app that you can build in a very short time. You create a button that has a picture of a cat on it, and then program the button so that when it is clicked a 'meow' sound plays."
- □ Step 1: develop "Hello Purr" App with Emulator
 - Everyone develops the app
- □ Step 2: deploy the app to an Android device

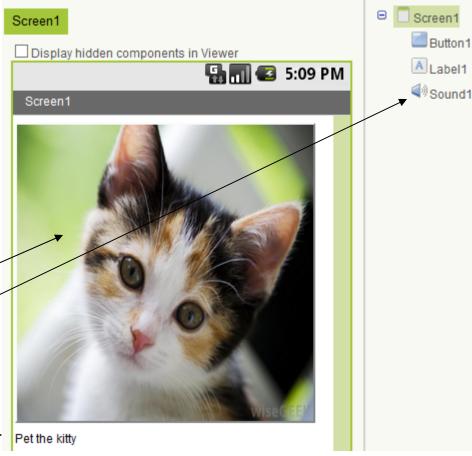
Follow Tutorial or Follow Me

□ Tutorial

- <u>http://appinventor.mit.edu/explore/content/hellopurr.html</u>
- □ Steps
 - Download media files
 - Design user interface
 - Program application behavior (handle events)

Download Media Files

Download two media files

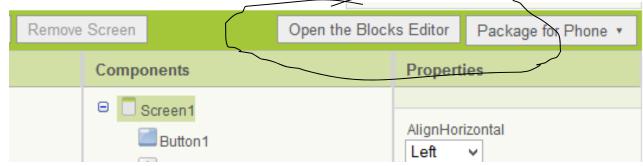

- Links are placed at <u>http://sysnetgrp.net/academy/cs4hs/cs4hs-resources</u>
- Make sure to do:
 - Right-click on the mouse, then "Save target as" (or "Save link as" depending on the browser you are using)

□ **Note** the location (folder) you saved the files

- □ Kitty picture: kitty.png (Right-click and Save)
 - <u>http://appinventor.mit.edu/explore/sites/all/files/helloPurr/kitty.png</u>
- □ Meow sound: meow.mp3 (Right-click and Save)
 - <u>http://appinventor.mit.edu/explore/sites/all/files/helloPurr/meow.mp3</u>

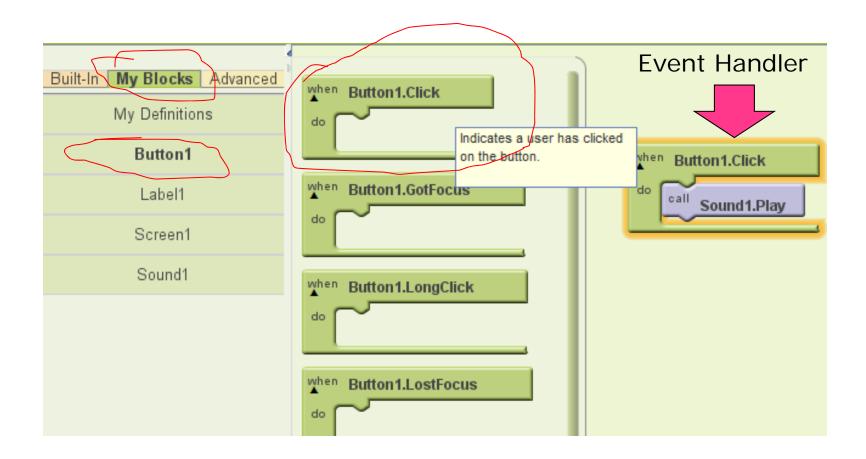
Design User Interface

- Use the App Inventor Designer
- **G** Go to
 - <u>http://beta.appinventor.</u>
 <u>mit.edu</u>
- Select and arrange components
 - A Button
 - A Sound
 - A Label

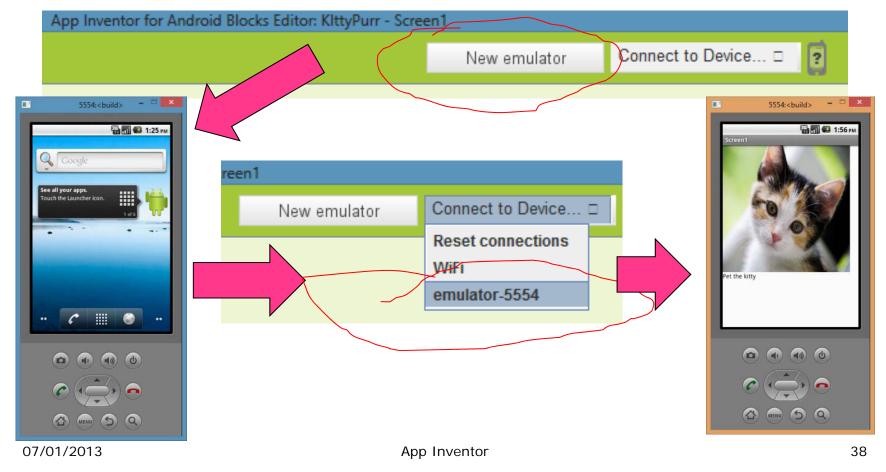


07/01/2013

Program Behavior


□ Use App Inventor Blocks Editor

□ Open it from App Inventor Designer


- It may take a while!
- Do not click "Cancel"!
- Do click "Run"!
- Leave it open, no need to close!

Add Blocks

Ready to Run the App

□ Use emulator: it also takes time, be patient

How About Real Android Device?

The instructors provide an Android Tablet to each participant

□ Now, it is the time ...

07/01/2013

App Inventor

Work with Real Android Device

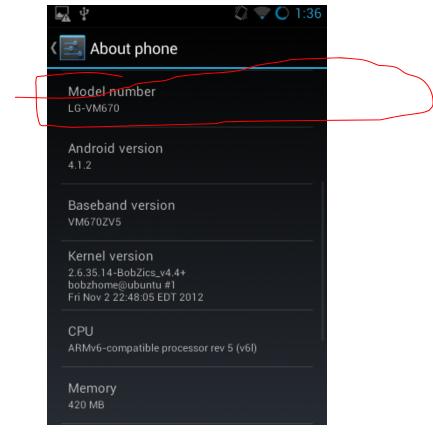
□ Install driver software

- Typically available from the device's technical support website
- □ Configure the device for development

Driver Software

□ How to?

- Identity the device's model
- Locate the device's driver software
- Download and install


Identify Device's Model and Maker

- □ A device can be marked using different names by different service providers.
- □ Need to find the phone's model and maker

Identify Device: Simple Method

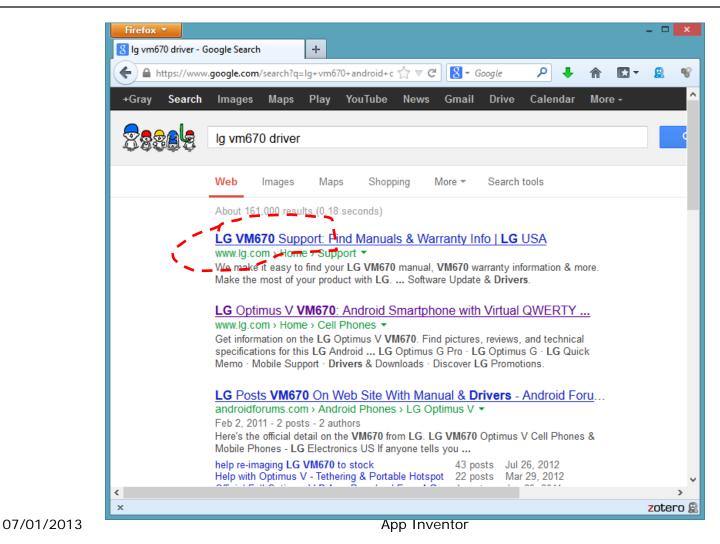
□ The "Setting" App and then "About …"

About tablet	
System updates	
Status Status of the battery, network, and other information	
Legal information	
FCC ID: MSQME370T	
IC: 3568A-ME370T Model: ME370T	
Model number Nexus 7	
Android version 4.2	
Kernel version 3.1.10-g22b4fod android-build@vpbs1.mtv.corp.google.com #1 Fri Nov 2.1055/26 PDT 2012	
Build number JOP40C	
No need, you are already a developer.	

App Inventor

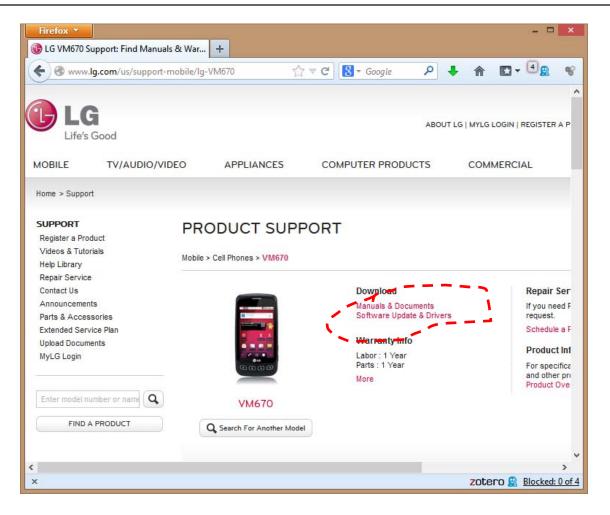
Identify Device: Simpler Method

07/01/2013


App Inventor

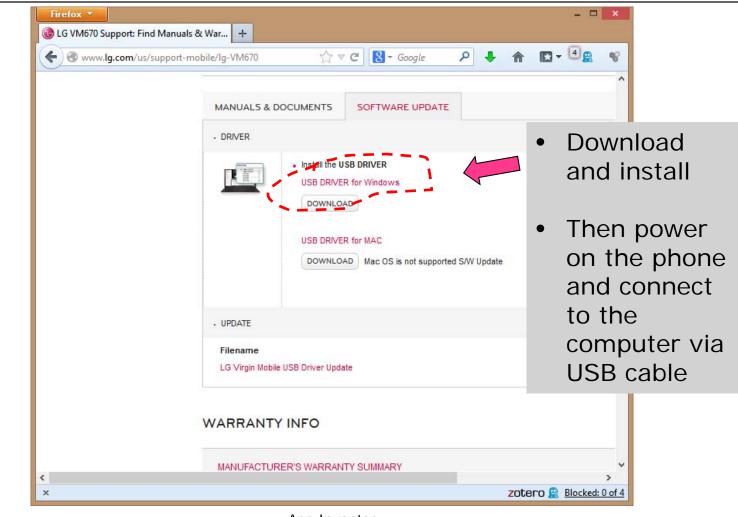
Driver Software

□ Example: LG VM670

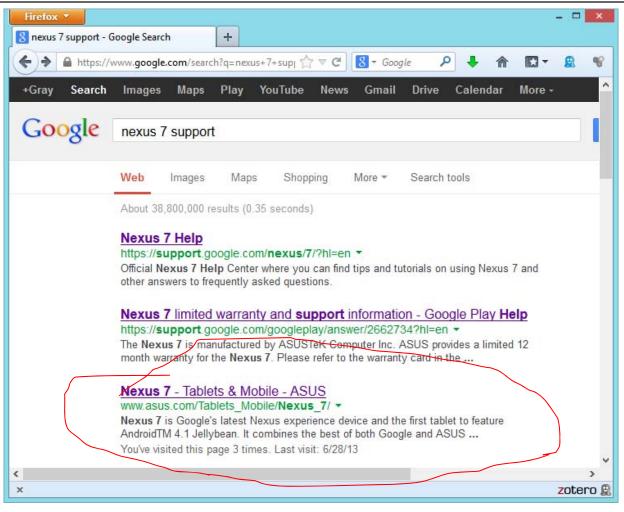

- Google "LG VM670 support"
- Locate the page belonging to the maker
- □ Example: Nexus 7
 - Google "Nexus 7 support"
 - Locate the page belonging to the maker

Google Result for LG VM670

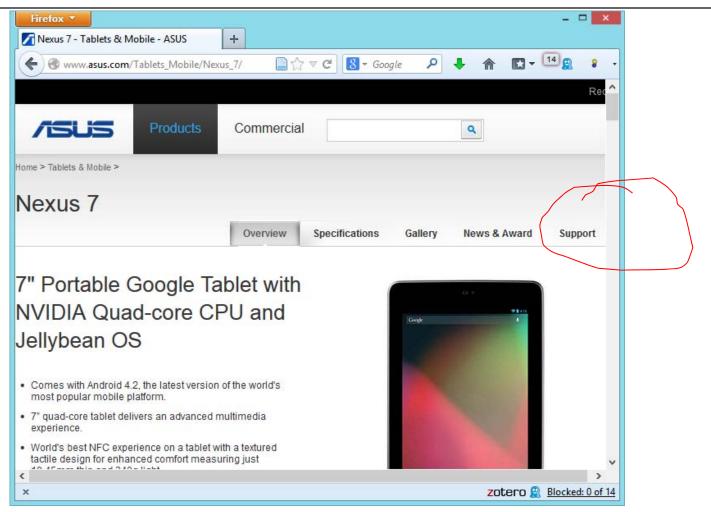
46


LG VM670 Support Page

07/01/2013

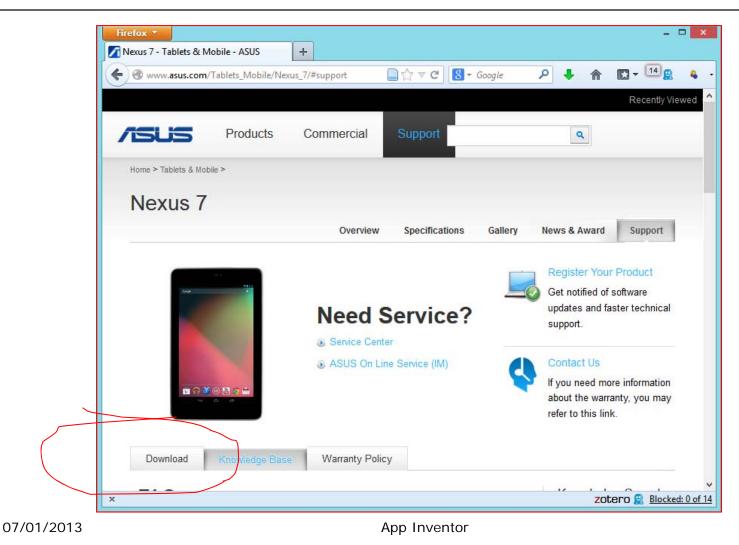

App Inventor

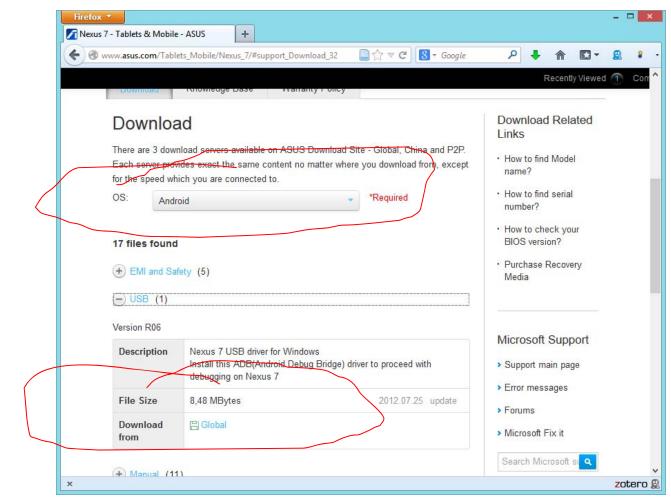
LG VM670 Driver Software


07/01/2013

Google Result for Nexus 7

07/01/2013


Locate "Support Page"


07/01/2013

App Inventor

Locate "Download"

Locate the "Driver"

07/01/2013

App Inventor

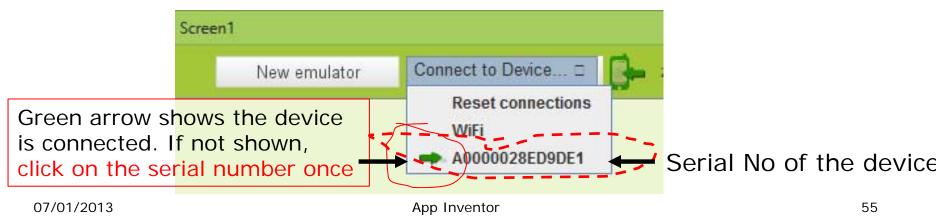
Configuration on Device

Old versions of Android

- LG VM670 (Android 2.2.1)
 - □ Allow phone to install apps from *Unknown Sources*
 - Settings \rightarrow Applications \rightarrow Check *Unknown Sources*
 - □ Allow USB Debugging
 - Settings → Applications → Development → Check *USB Debugging*

New versions of Android

- Nexus 7
 - □ Allow device to install apps from *Unknown Sources*
 - Settings → Security → Check "Unknown sources" (may also uncheck "Verify apps")
 - □ Allow USB Debugging
 - Settings → About ... → Tap "Build number" 7 times; then Settings → Developer options → Check "USB debugging"

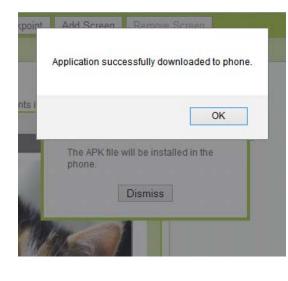

More Detailed Description ...

□ <u>http://sysnetgrp.net/academy/cs4hs/cs4hs-resources/nexus-7</u>

Download App to Device (1)

□ Launch the *App Inventor Designer*

- <u>http://beta.appinventor.mit.edu</u>
- Open the App project
- □ Make sure the device is connected
- Open the App Inventor Blocks Editor. Make sure the connected device is shown


Download App to Device (2)

- Go back to the Designer and click the "Package for Phone" button, then "Download to Connected Phone".
- The button should turn gray and say "Packaging." It takes about 3 to 5 minutes to complete the packaging process. Do not disconnect your device or touch the USB cable during this time.

Download App to Device (3)

- □ After the packaging is completed, a pop-up notification indicates the app is downloaded.
- □ The app with an Android icon stored in the same place as all the other apps you have on your device.

07/01/2013

App Inventor

Run App on Device

- □ Tap the app and see what happens!
- □ The Kitty Purr app
 - Does it meow?
 - Does the device vibrate?

App Inventor Specific Method: MIT AICompanion

- Install App Inventor Apps without installing device driver
 - Require data network connectivity
 - Require the MIT AICompanion App
- □ Download and install the MIT AICompanion App
 - Tag on Google Play Store on the device
 - Search MIT AICompanion
 - Select the App and Tap on "Download and Install"

Install App Inventor Apps using MIT AICompanion: QR Code

□ Show the QR code of the App

07/01/2013

Install App Inventor Apps using MIT AICompanion: Install App

Run the MIT AICompanion App on the

- device
- Scan the QR Code using the MIT AICompanion App
- Alternatively enter 6-letter code from the Blocks Editor (see next slide)

9 🛒 🖾 32° 🐃 🖾 🕍 🐩 🛍 🚧 🛭 🦻 📓 11

App Inventor Companion

Your IP Address: 192.168.1.102

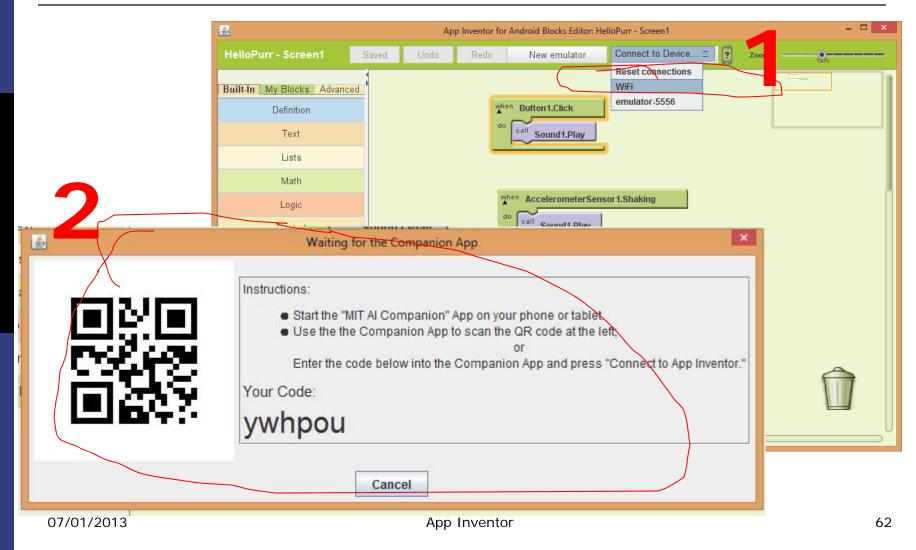
Directions:

 On the Blocks Editor, press "Connect to Device" and select WiFi.
 Type the 6-letter code or scan the QR code

displayed on the Blocks Editor.

 Click the 'Connect to App Inventor' button below.

 If not connected in 30 seconds, click reset and repeat steps 1-4.


Scan the QR Code

Or type the 6-letter code here.

Connect to App Inventor

Install App Inventor Apps using MIT AICompanion: Install App

Sensor-Driven Applications

□ Smart phones and tablets have many sensors

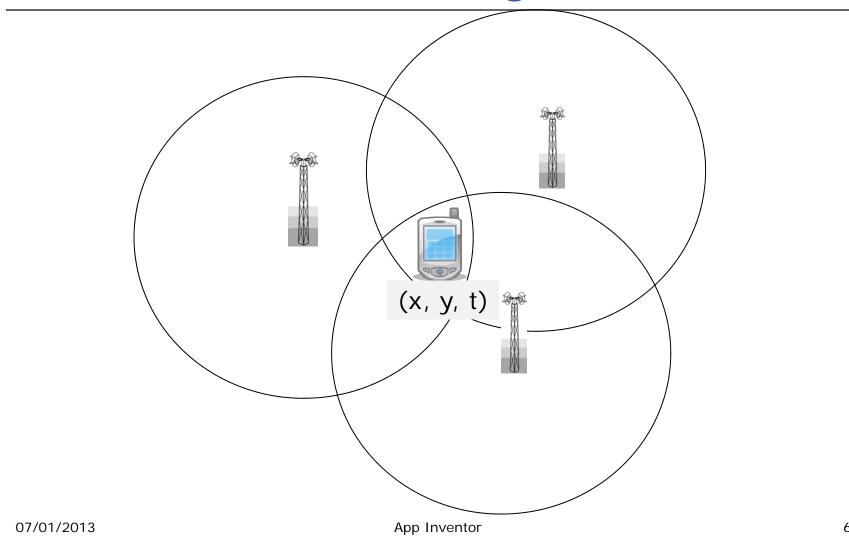
- Location sensor (GPS or network)
- Accelerometer
- Orientation sensor and gyroscope
- Proximity sensor (light sensor)
- Camera sensor

.

Acoustic sensor (microphone)

Sensor Data

D Characteristics


- Continuously streams of data
- Vary with time
- Noisy and sometimes can be erroneous
- How to store, process, and use the data is new to many
 - Filtering
 - Statistical processing
 - •••••

Location Sensor

□ Common "providers"

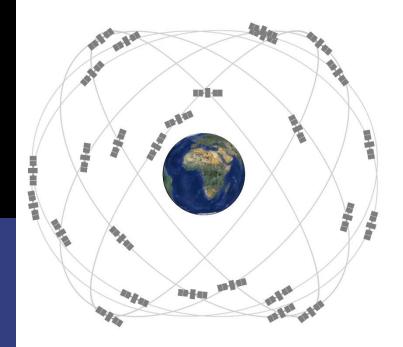
- Wireless networks
 - Using triangulation of multiple base stations
- Global Positioning Systems
 - e.g., the U.S. Global Positioning Systems (GPS)
 - Using triangulation of 4+ satellites on Median Earth Orbit (~20,200km)

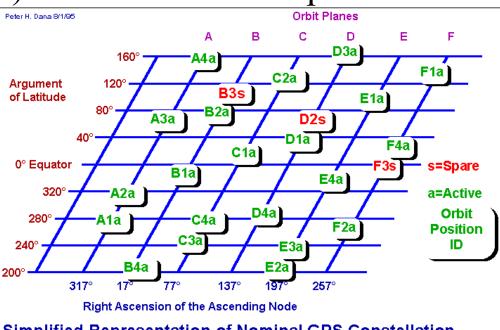
Base Station Triangulation

66

The U.S. Global Positioning System

- Maintained and operated by the U.S. Air Force
- Minimum 24 satellites
 in Medium Earth Orbit
 (20,200 km)
- Since June 2011, Air
 Force flies 27 satellites
 using "Expandable 24"
 configuration

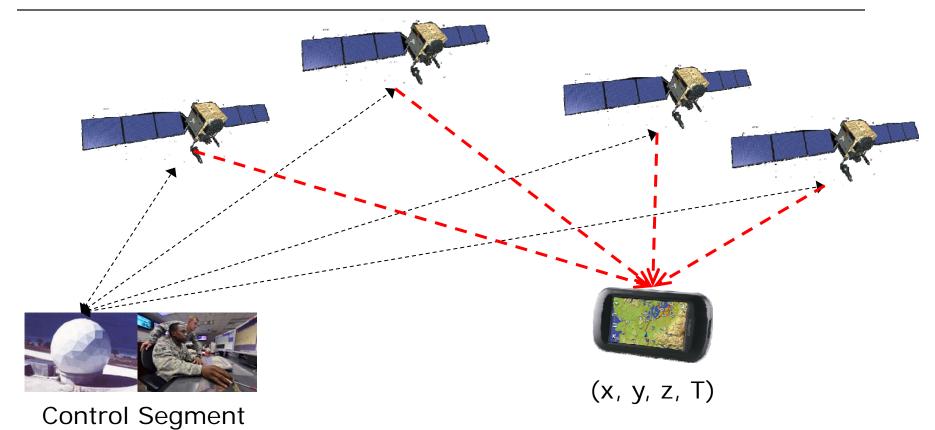



A United Launch Alliance Atlas V rocket successfully launched the fourth Global Positioning System IIF-4 satellite for the U.S. Air Force at 5:38 p.m. EDT, May 15, 2013, from Space Launch Complex-41, Cape Canaveral Air Force Station, Fla. (Courtesy photo/ULA)

07/01/2013

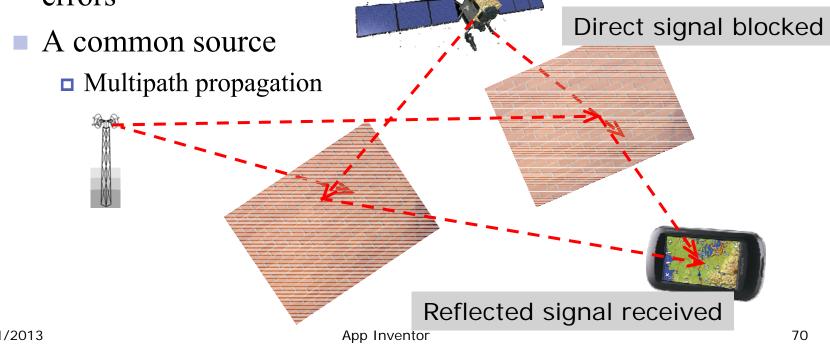
GPS Orbital Planes

□ Minimum 24 satellites in 6 equally spaced orbital planes (55° inclination). Minimum 4 each plane.



Simplified Representation of Nominal GPS Constellation

Source: <u>http://www.gps.gov/systems/gps/space</u> 07/01/2013


Source: <u>http://www.colorado.edu/geography/gcraft/notes/gps</u>
App Inventor 68

GPS Localization

Source Localization Error

- □ Both wireless network base station triangulation and GPS rely on radio signals
 - Each has some unique factors contributing to localization errors

07/01/2013

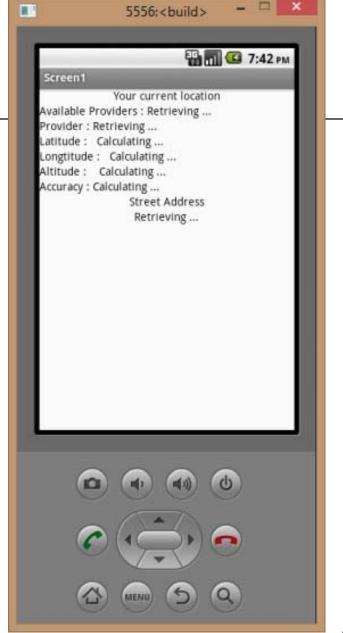
App Inventor Location Sensor

- □ <u>http://appinventor.mit.edu/explore/content/sensors.html#LocationSensor</u>
- □ Properties
 - Latitude, Longitude, Altitude, and Accuracy
 - CurrentAddress
 - Only available when you have data network connectivity.
 - Accuracy depends on determined location and backend database
 - DistanceInterval and TimeInterval
 - The condition that a location update will be sent.
 - HasAltitude, HasAccuracy, HasLatitudeLongitude ...
- □ Methods and events

App Inventor Location Sensor: Events

□ Events

- LocationChanged(number latitude, number longitude, number altitude)
 - □ Called when the Android device reports a new location.
 - Frequency controlled by TimeInterval and DistanceInterval and actual location changes
 - Location update drains energy (battery): do not use a small TimeInterval or DistanceInterval unnecessarily
- StatusChanged(text provider, text status)
 - **Called** when the status of the service provider changes.


App Inventor Location Sensor: Methods

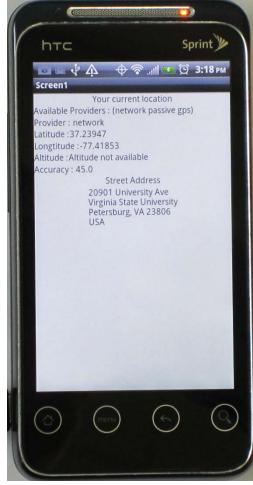
□ Methods

- number LatitudeFromAddress(text locationName)
 Determines the latitude of the given address.
- number LongitudeFromAddress(text locationName)
 Determines the longitude of the given address.
- Must have data network connectivity to return a meaningful result

Location Sensor

- □ App: where am I?
 - Display current location and more
- □ Download the app from
 - <u>http://sysnetgrp.net/academy</u> /cs4hs/cs4hs-resources
- □ Upload to your account




Upload the App Inventor Project

http://beta.appinventor.mit.e	edu/#19310062 🔎 - C 🥥 App Inven	tor for Android ×	
x ॡ Convert ▼ Select MIT App Inventor BETA P	y rojects Design Learn (Debugging	Welcome to the App Inventor beta release. Be sure to check the list of <u>known issues</u> and <u>release notes</u> . <u>Try the</u> <u>App Inventor Community Gallery (Beta)</u>	hui.gray.chen@gmail.com <u>Sign out</u> Motd Update: 5/14/2013 Companion version 2.07 now required. <u>Read Important Info</u>
New Delete Download All Projects Projects Name▲	Download Source	nd Project Browse	
pload Project	.zip Browse	Cancel OK	
Cancel	ОК		Built: May 6 2013 Version: v134

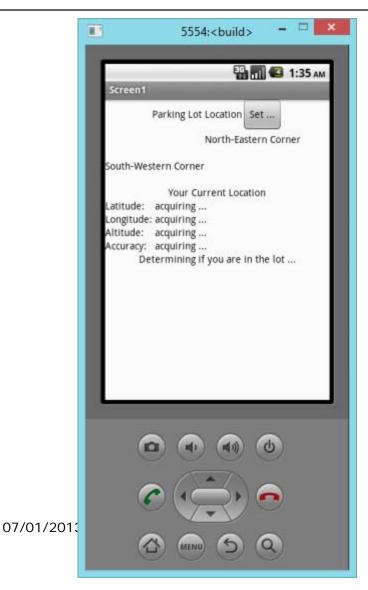
07/01/2013

Compare Different Location Providers

App Inventor

07/01/2013

Exercise 1

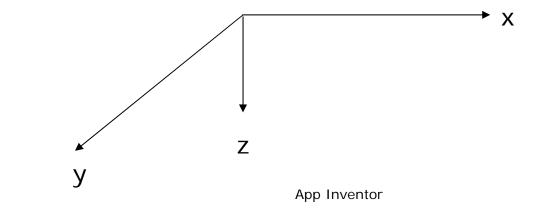

Parking Lot

□ Am I in the parking lot?

- Assume the parking lot is of rectangular shape and whose borders are parallel to either latitude lines or longitude lines
- The location of the north-eastern and south-western corners are given (in latitude and longitude) in four textboxes.
- Use Location Sensor to determine whether your device is in the parking lot.
 - Yes. Display: I am in the parking lot.
 - No. Display: I am not in the parking lot.

Exercise 1: Sample Solution

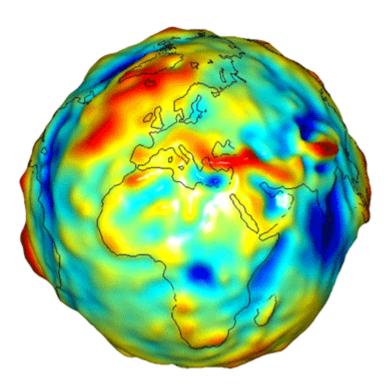
App Inventor



78

Accelerometer

□ Acceleration


- rate at which the velocity changes over time
- Acceleration is a vector (has direction) as velocity does
- □ Measure acceleration of the device on 3-dimensions
- □ Dimension: m²/s (meter squared per second)
- □ The gravity of Earth is acceleration

07/01/2013

The Gravity of Earth

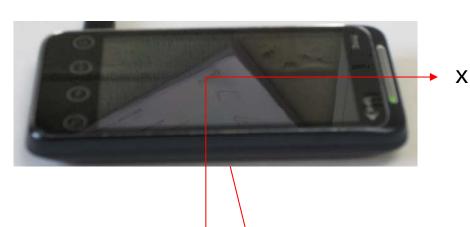
□ Not homogenous □ ~9.8 m²/s

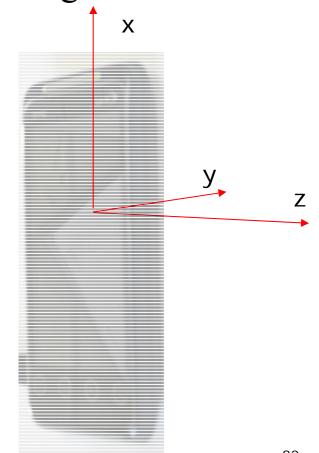
Source: http://cires.colorado.edu/science/divisions/ses/foci/gravityFromSpace.html

07/01/2013

App Inventor Accelerometer Sensor

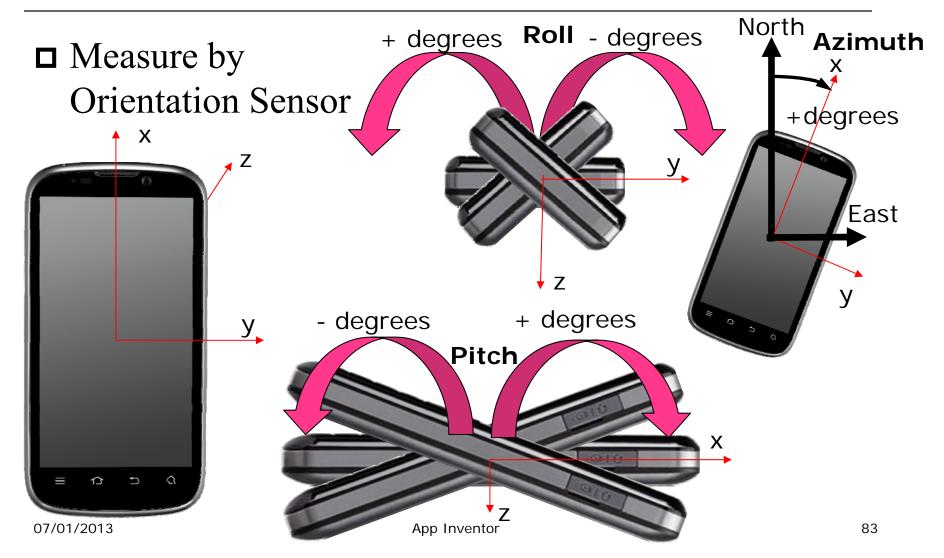
□ Produces


XAccel, YAccel, and ZAccel

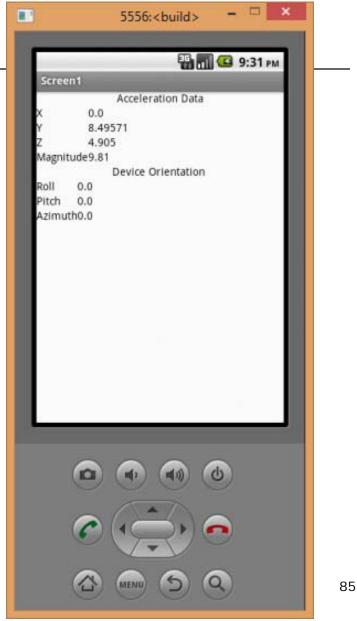

Which Directions are X, Y, and Z?

□ Configuration depends on vendor design

Ζ


Typically two designs

Your Device can Pitch, Roll, and Rotate


App Inventor Accelerometer Sensor

□ Produces

- XAccel, YAccel, and ZAccel
- Sensor (a physical component) is mounted on the device in a fixed position
- □ When the device rolls, pitches, and changes its azimuth, the 3 axis of the sensor also changes.
- Even if the device as a whole (treated as a "point") maintains the same acceleration, the acceleration readings can alter.

Observe the Acceleration Data App

- The Acceleration Data App
 - Download from
 - <u>http://sysnetgrp.net/acad</u> <u>emy/cs4hs/cs4hs-</u> resources
 - Upload the App

Observe the Acceleration Data App

- Set the device again the top of the desk to reduce any change of any movement
- Alter the device's orientation
- □ What do you observe?
 - The gravity is always present!

86

Participatory Sensing using Mobile Devices

- Determine individual or community's habits or behavior
 - Healthy life style
 - How much excise does an individual do?
 - What does the individual's diet constitute of?
 - Senior citizen care
 - Fall detection
 - •••••

□ Example

- Human activity classification using accelerometer data
 - Where an individual is still, walking, or running?

07/01/2013

Human Activity Classification: Still-Walk-Run

- □ Can we use a mobile device's accelerometer data to determine if the user is still, walking, or running?
- □ If we can, we can probably introspect the individual's life style correlating with other data (such as diet).
- The method, if successful, potentially can be applied to solve many other problems.
 - Essentially by contributing to determine what a user is doing
- □ Let's examine accelerometer data!

Human Activity Classification App

- □ This app is incomplete
- □ But is designed to examine accelerometer data
- **D** Download it from
- □ <u>http://sysnetgrp.net/academy/cs4hs/cs4hs-resources</u>
- □ Upload the project

Experiment

□ Collecting data for 15 seconds using the App

- Standing still for 5 seconds
- Walking for 5 seconds, and
- Running for 5 seconds
- □ Graph and observe the data
- □ What's your observation?

Classification Algorithm (1)

□ A simple attempt

Use standard deviation of the accelerometer data over a moving window of a given length

$$\overline{A_{w(s,e)}} = \frac{\sum_{i=s}^{e} A(i)}{e-s+1} \quad s_{w(s,e)} = \sqrt{\frac{\sum_{i=s}^{e} \left(A(i) - \overline{A_{w(s,e)}}\right)^2}{e-s}}$$

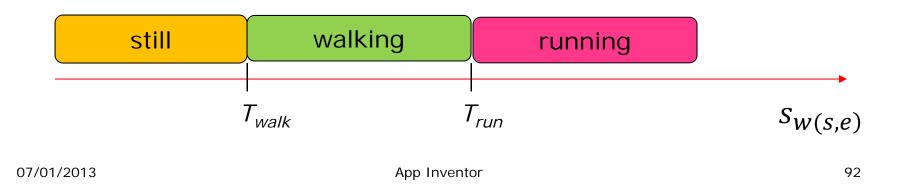
where A(i) is the magnitude of the acceleration data, w(s, e) is the window with starting time *s* and ending time at *e*, and

$$A(i) = \sqrt{A_{\chi}(i)^{2} + A_{y}(i)^{2} + A_{z}(i)^{2}}$$

where A_x , A_y , and A_z are accelerometer readings in directions x, y, and z respectively.

07/01/2013

Classification Algorithm (2)


D Based on your observation

• Pick two three thresholds, T_{walk} and T_{run}

□ Then,

- If $s_{w(s,e)} < Twa_{lk}$, the user is still;
- otherwise, if $T_{walk} \leq s_{w(s,e)} < Tru_n$, the user is walking

• otherwise, the user is running

Exercise 2

- □ Implement the classification algorithm by revising the uploaded the "Human Activity Classification" project
 - Use the screen "ClassificationUsingSTD"
 - Revise the "ClassificationButton.Click" event handler

Sample Solution

- Retrieve the maximum tag from the TinyDB using tag "Counter"
- 2. Let the "Counter" value to the "end" value of a window
- 3. Choose a "start" value for the window. The "start" value must be less than the "end" value.
- 4. Compute mean of the magnitudes within the window
- 5. Compute standard deviation (let it be "std") of the magnitudes within the window
- 6. If std \leq T_{walk}, you are still; else if T_{walk} \leq std < T_{run}, you are walking; else you are running

App Inventor: What We Know?

□ App Inventor for Android is a good tool

- Introduce learners to problem solving strategy (such as divide-and-conquer)
- Introduce learners to programming mobile devices
- Help learners to develop computing abstractions
 - **Components**
 - Variables, procedures, control structures
- Avoid learners' dealing with syntax of programming languages
- Avoid learners' dealing with complex development environment and platforms

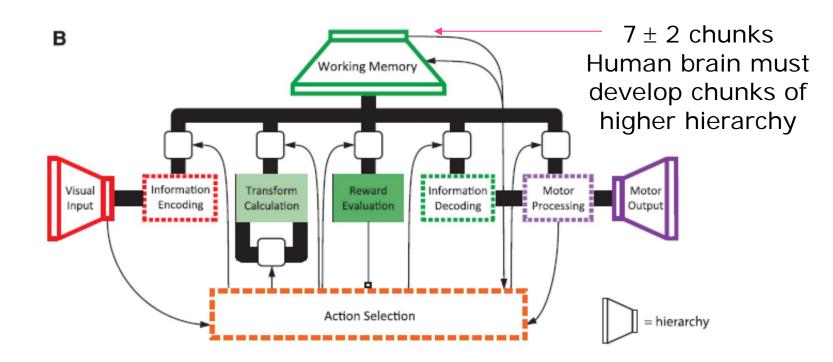
App Inventor: What Needs to Improve?

These arguments may be invalidated as App Inventor continue to evolve

- □ Variable
 - Only support global variable (with the scope of a screen)
 - Desired: Need application-scope variables and procedure-scope variables
- □ Procedure
 - Visible within the scope of a screen
 - Inconvenient to return more than one values to caller
 - Desired: Need application-scope procedures and support to return more than one values
- **D** Editing
 - Cannot copy blocks between screens
- **D** Emulations
 - Does not support multiple-screen apps
- □ Robustness of the tool needs improvement

07/01/2013

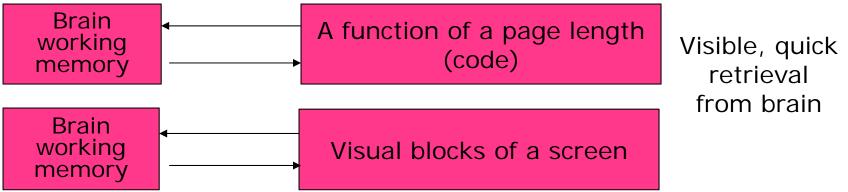
App Inventor: Fundamental Deficiency


Presenter's personal observation and still need scientific evidence

App Inventor is not suitable for small project and difficult for projects of moderate size.

□ Hypothesis

- Visual programming is effective in shortening learning curve to develop small projects;
- However, visual programming is fundamentally limited in help learners develop large projects
- Fundamentally constrained by how human brain works.


Computational Model of Human Brain

Eliasmith, C., Stewart, T., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., & Rasmussen, D. (2012). A Large-Scale Model of the Functioning Brain Science, 338 (6111), 1202–1205 DOI: 10.1126/science.1225266

Memory and Abstraction

- Visual blocks competes limited screen size that serve as an external working memory
- □ Observation: a good coding practice is
 - To write a function within a length of a page

However, visual blocks has less information (low information density), require more screen space, thus hinder information retrieval and storage, eventually information encoding & decoding

07/01/2013

Is There Any Alternative?

- □ A trade-off between "traditional coding" and "visual programming"
 - Shortened learning curve for beginners
 - Allow develop abstractions quickly using large projects
- □ Sofia and Java Programming with Android
 - Drs. Kostadin Damevski and David Walter will take the lead.

Conclusion

□ Introduction to App Inventor for Android

- Opportunities in learning and teaching
- □ Sensor-driven applications
 - Understand location, orientation, and accelerometer sensors
 - Use the sensor to develop simple applications